

Implementing Extended Structural Synthesis of Programs

Sven Lämmermann

Department of Microelectronics and Information
Technology, KTH

laemmi@it.kth.se

Enn Tyugu

Estonian Business School
tyugu@ebs.ee

Abstract

We discuss logic and specification language of a program
synthesizer for Java intended for dynamic synthesis of
services. We introduce metainterfaces as logical
specifications of classes. They can be used in two ways: as
specifications of computational usage of classes or as
specifications of new classes composed from metaclasses –
the classes already supplied with metainterfaces. The
specification language used has a straightforward translation
into a restricted first -order constructive logic. New
programs are composed by a deductive synthesis method
close to the structural synthesis of programs. An example of
composition of a transaction service is presented.

Introduction

We discuss logic and specification language proposed in
an ongoing project aimed at the development of a program
synthesizer for Java intended for dynamic synthesis of
network services. A prototype of the synthesizer has
already shown good performance. In this project, we
prioritize the efficiency of proof search before the
generality of the logical language. The method under
consideration is deductive program synthesis. In essence, it
is an extension of the structural program synthesis (SSP)
described already in (Mints and Tyugu 1982), and we call
it ESSP – extended structural synthesis of programs.

Our discussion is related to two quite different
knowledge domains: software composition and logic. In
the introductiuon we briefly look at the features of
software that must be representable by the logic of the
synthesizer. We explain here as well which features of
logic will be used to support the required software features,
and show how the complexity of proof search depends on
the features covered by the logic. As expected, supporting
all desirable features of the software composition leads in
principle to exponential time complex ity of the proof
search. However, our proof search strategy enables us to
construct a coarse-grained proof quite efficiently using
admissible inference rules that correspond to actual
applications of functions and control structures in
computations. We are still quite satisfied with the
efficiency of the application of the synthesizer to practical
problems.

Our synthesis method is aimed at composing software
from functions, including higher-order functions (which
are taking automatically synthesized functi ons as
arguments, and can so represent control structures, e.g.
loops and conditional statements). Higher -orderness
guarantees the generality of the method in principle – one
can preprogram a small set of higher order functions that
are sufficient for representing any computable function. In
practice, we use a specific set of preprogrammed functions
for every problem domain. These functions are
implemented as methods of classes written in Java. We
distinguish three kinds of building blocks used in the
software synthesis process:

� The smallest building blocks (we call them also
modules) are methods; they are selected and
connected automatically by the synthesizer.

� The next size blocks are Java classes representing
particular concepts.

� The largest are metaclasses that represent independent
software components and are specified declaratively.

The software features we are going to express in logic
are the following:

� Dataflow between pre-programmed modules
� Order of application of modules (control variables)
� Hierarchical data structures
� Usage of pre -programmed control structures

(subtasks)
� Alternative outcome of modules, in particular

exception handling
� Implicit linking of modules
1. Dataflow. Dataflow dependencies between pre -
programmed functions can be expressed simply by
implications, where for each function there is an
implication. On its left hand side is a conjunction of
propositions stating for each input variable (for each
argument) that the input is available and on the right had
side is a conjunction of propositions stating for each output
variable that the output is computed. This conforms with
the intuitionistic realizability of implications as functions
and propositional variables as data. Consider the following
example. Let f and g be modules with input variables a, b
respectively, and output variables b, c respectively. Then
the logical description of the dataflow will be AB⊃ and
BC⊃ where A, B, C are propositions stating availability

(computability) of variables a, b, c. Computability of c
from a follows from derivability of C from A.
2. Order of module application . We are sometimes
confronted with the situation where the order of module
application matters, but this is not determined by dataflow.
To overcome this problem, a logic must, in addition,
include means to force a certain order of module
application. For instance, let the modules f and g from the
example above be two methods of a class D implemented
in an object oriented programming language. Before these
two methods can be applied, a constructor d of the class D
must create an object of class D. By adding a proposition,
let’s say D (as an additional conjunct) to the right hand
side of the implication specifying the constructor d, and
adding the same proposition to the left hand sides of the
implications specifying f and g, the correct order of
application is forced on the modules. Fortunately, this does
not require any extension of the logic compared to the
logic of dataflow.
3. Hierarchical data s tructures. Hierarchical data
structures can be specified by means of structural relations
that bind a structure, e.g. x with its components, say

1,, kxx � . The computational possibilities of this relation

can be expressed by the implications 1 kXXX∧∧⊃� and

iXX⊃ , for 1,,ik= � where X and Xi denote again the

computability of x and xi respectively. This does not
require extension of the logic used for expressing the
dataflow. (Object-oriented environments may require some
additional computations for obtaining a structured value,
e.g. application of a constructor of a proper class.)
4. Usage of predefined control structures. As we have
noted already, some building blocks that have to be
specified are higher order functions that take other
functions as input. A functional input f of a function g can
be specified by an implication on the left hand side of the
implication specifying the function g. For instance, the
formula ()IANS⊃∧⊃ specifies a function g with
arguments f and n that computes s, where the function f can
be any function computing a from i that is composed from
given blocks. (The capital letters again denote the
computability of the variables denoted by the respective
small letters.) Accepting nested implications as formulae is
an essential extension of the logical language. Indeed, any
propositional formula of the intuitionistic logic can be
encoded by formulae of this language so that its
derivability can be checked in a theory within this
implicative language, see for instance (Mints and Tyugu
1982).
5. Alternative outcome of modules. Even considering only
dataflow, we can meet a situation where a module may
produce one of several alternative outputs every time it is
applied (represented by branching in a dataflow). In
particular, this is the case with exception handling – we
expect that a normal output will be produced, but must be
ready to handle exceptions, if they appear. This requires

introduction of dis junctions on the right hand side of
implications.
6. Implicit selections and linking of software components.
Our intention is to use the synthesizer for putting together
large programs from components. We mean by a
component not just a function, but also a software
configuration providing some useful functionality. We
expect to have libraries of components supporting various
problem domains, like packages in Java. So the problem of
automatic selection components appears. This requires a
language where we can state that a component with
particular properties exists or, vice versa, it may be
required. Hence, we need existential and universal
quantifiers. However, we can restrict the usage of
quantifiers so that we will not need the whole power of
first order logic.

Extended structural synthesis covers the features
discussed above as follows:

� Non-nested implications of conjunctions of
propositions cover 1, 2, and 3,

� Nested implications cover also 4,
� Disjunctions cover 5, but can be reduced to nested

implications,
� Restricted first-order logic covers 6.

The proof search for non-nested implications has linear
time complexity. Adding nested implications gives us the
general case of intuitionistic propositional logic, hence
exponential time complexity in general; however, we can
use a modal logic for nested implications and get simpler
proof search, see (Mints 1991). In the case of first-order
logic we use quantifiers in a very restricted way, and hope
to keep the search manageable.

We have chosen Java as the language we extend,
because it is a widely used object -oriented language
suitable for implementing services in a network.
Components of services are represented as classes and
interfaces. Special attention is paid to handling exceptions
in Java in a logically sound way. Also handling
constructors requires special attention. This has required
some extension of the logic used in (Lämmermann 2000).
Considerable part of the presentation takes an example of
synthesis of a banking service implemented in our project.
This example is introduced gradually by presenting Java
classes on various parts of the paper.

Specifications as Metainterfaces

On the specification language side we introduce
metainterfaces as logical specifications of classes. They
can be used in two ways: as specifications of
computational usage of classes or as specifications of new
classes composed from classes already supplied with meta-
interfaces. A metainterface is a specification that:

� Introduces a collection of interface variables of a
class.

� Introduces axioms showing the possibilities of
computing provided by methods of the class, in
particular, which interface variables are computable
from other variables under which conditions.

� Introduces metavariables that connect implicitly
different metainterfaces and reflect mutual needs of
components on the conceptual level.

Interface variables are abstract variables that get
implementations as class- or instance variables, only if
they will be used in computations by a synthesized
program.

Axioms that we use are implications with preconditions
for applying a method on the left- and postconditions on
the right -hand side. Interface variables denote in
preconditions that the variable must have a value before
the method is applied, and in postconditon – that its value
will be computed. (There are other kinds of subformulas in
axioms that we are going to discuss later). For instance,
having some class written in Java with two methods
getExchangeRate and getLocalCurrency for
calculating the exchange rate of a given currency and the
local currency, we can introduce interface variables
currency for a source currency, localCurrency , and
exchangeRate , for the local currency and exchange rate
respectively, and declare an axiom that specifies how one
can use calculation of exchange rate. Here is a fragment of
the metainterface: these are interface variables:
currency, localCurrency : String
exchangeRate : float

Here follows the specification of computability (the arrow
-> is used in our language as an implication sign for
convenience of typing):
currency,localCurrency - > exchangeRate {getExchangeRate}
- > localCurrency {getLocalCurrency}

If we wish to specify that the local currency can be
found from a class LocalCurrency , we can use a
metavariable (LocalCurrency) and replace the
specification:

- > localCurrency {getLocalCurrency} by
(LocalCurrency) - > localCurrency {assign}

The last extension enables the synthesizer to detect
automatically local currency that may depend on the
location where the service will be used, if it is specified in
some accessible metainterface (by unifying metavariables
of different metainterfaces). The class Exchange extended
with a metainterface as a static component spec is as
follows:
class Exchange implements java.io.Serializable {
 static String[] spe c = {
 "currency, localCurrency : String",
 "exchangeRate : float",
 "currency,localCurrency - >
 exchangeRate{getExchangeRate}",
 " - > localCurrency {getLocalCurrency}"
 " - > (Exchange) {Exchange}"
 };
 float getExchangeRate(String currency,
 Stri ng localCurrency) {…}
 String getLocalCurrency() {…}
}

A metainterface can be used as well for specifying how
an application should be composed from components that
are supplied with metainterfaces. In the latter case, a new
class can be built completely from a specification of its
metainterface. For this purpose, specifying equality
relations between some interface variables of the new class
may be needed. An extended example of the usage of
metaclasses is presented in the section Example. Here we
present a metaclass for calculating exchange rates that uses
another metaclass as a component.
class ExchangeRate implements java.io.Serializable {
 static String[] spec = {
 "currency : String",
 "exchangeRate : float",
 "exch : Excha nge",
 "exch.currency = currency",
 "exch.exchangeRate = exchangeRate",
 };
}

The class ExchangeRate can be used for several
purposes. The actual usage will be determined by a goal.
Goals can have different forms, for instance,
ExchangeRate| - currency - >ex changeRate gives a
program for computing the exchangeRate of a given
currency and the local currency. The following definition
of the method implementing the given goal is fully
automatically built for the class ExchangeRate , and the
name spec_1 is automatically generated for it.
Realization of currency - > exchangeRate {spec}
float spec_1 (String currency) {
 Exchange ExchangeRate_exch_obj = null;
 ExchangeRate_exch_obj = new Exchange();
 String ExchangeRate_exch_localCurrency = null;
 ExchangeRate_exch_loc alCurrency =
 ExchangeRate_exch_obj.getLocalCurrency();
 float ExchangeRate_exchangeRate = 0;
 ExchangeRate_exchangeRate =
 ExchangeRate_exch_obj.getExchangeRate(currency,
 ExchangeRate_exch_localCurrency);
 return(ExchangeRate_exchangeRate);

}

The number of possible different computations
described by a class or an interface is the number of its
methods. Using metainterfaces, a user gives a goal of
computation, and names data items to be computed or
given as arguments. This enhances flexibility in two ways:
first, the number of possible computations is at least the
number of available methods, but can be much larger and
often is. Second, component deployment does not require a
user to know names of methods. For example, in Java one
has to compose streams from a large number of classes for
programming input and output. It is easy to build a new
class InputOutput including streams as components
and with a metainterface that will enable one to do the
composition of streams automatically. To specify some
input or output in a program, one has to give a goal, e.g. to
put a string into a file one can write

InputOutput | - stringValue, filename - > file

that can be read as “take stringValue and filename
and create file using the class InputOutput ”.

General Scheme of Synthesis of Classes

We are using a concept of metaclass in order to
distinguish a class supplied with a metainterface from a
conventional class. In principle, it is unimportant, whether
the metaclass is considered as one single text or its
metainterface part is kept separately like different parts of
a Java bean. In our implementation we keep the
specification of a class as a component of the class in the
form of an array of strings. This allows us to implement a
metaclass as a regular Java class.

Our language of specifications has a straightforward
translation into a restricted first-order constructive logic
(see section Logical Semantics of Specifications). Axioms
have a realization given by a method of the class to whose
specification the construction belongs. In particular, an
implication like - >localCurrency may have a n
implementation in the form of a method, e.g.

String getLocalCurrency() .

Then we denote it in the specification by showing a name
of the respective methhod in curly brackets:

- > localCurrency {getLocalCurrency}

Development of a synthesized primary class C proceeds
as follows. One writes a specification of a new metaclass,
using existing metaclasses, and also writes a top-level goal
in the form of an implication P- >R where P is precondition
and R is postcondition of the main method of the new class
to be synthesized. So, the goal is to find a realization for
the implication P- >R in the form of a new method of the
new class C. This is achieved by a conventional scheme of
the deductive program synthesis: derive P- >R using logical
formulae of specifications as specific axioms, and extract
the realization of the goal from its derivation, see (Manna
and Waldinger 1992). The realization of the goal is
executed in the method main of the class C. New subgoals
may appear during this derivation, hence, more methods of
the class C may be synthesized completely automatically.
Also instance variables of the new class may be
introduced. In particular, any proposition with the meaning
“the interface variable x has a correct value” may get a
realization as an instance variable of the new class.
Summarizing this section we can say the following:

� We compose specifications manually and synthesize
software automatically in the form of new classes
using the composed specifications.

� Software components are metaclasses, each of which
includes two parts: 1) a realization in the form of an
ordinary OO class, and 2) a metainterface, i.e. a
specification that describes the possible computational
usage of methods of this class.

� Correctness of the realization of a component with
respect to its specification has to be guaranteed by the
developer of the component.

� Correctness of the synthesized class with respect to its
specification is guaranteed by the correct
implementation of the synthesizer.

Specification Language

Our aim in designing the specification language has been
to make it as convenient as possible for a software
developer. This language should allow a simple and exact
translation into a language of logic used in the synthesis
process, but we have tried to avoid excessive use of logical
notations. The following design decisions have been made.

� We have separated interface variables from instance-
and class variables (attributes of classes). This gives
flexibility to specifications and enables one to specify
existing classes developed initially without
considerations about their appropriateness for
synthesis. Moreover, by separation of interface
variables from attributes of metaclasses the creation of
new side effects is avoided.

� Inheritance is supported in specifications, but without
overriding in the specification part. This may cause
inconsistencies, if an implementation of some relation
is overridden. Fortunately, this situation can be
detected automatically by introspection of classes.

Core of the Language
Specification of an interface variable is a declaration of
the form <identifier>:<specifier> , where the
identifier is a name of the new variable declared, and the
specifier is one of the following phrases:

� Any of the primitive types of the underlying OO
language, int , float for instance

� A class name or a metaclass name.
It denotes that, if the variable is used in computations, it
will require a realization as an instance variable of the
given type.

Binding is an equality of the form <namel >=<name2>
denoting that realizations of the two interface variables
must have equal (may be partial) values. By the partial
values we mean that even if only some subcomponent of
the variable given by namel has a value, the respective
subcomponent of the other variable has the same value and
vice versa.

Name may be an identifier or a compound name, e.g.
a.b.c denoting the component c of the component b of
the interface variable a.

Our aim is to support compositional software
development and to enable one to specify new software by
synthesizing it from specifications that do not include other
declarations than component specifications and bindings,
where components are represented by interface variables of
suitable classes. The experience shows that one has to be
able to add some “glue” to components – by adding new
relations that bind them. This can be done by manually

programming some methods of the new class and
specifying them by means of axioms. The axioms are used
also for specifying classes that have a role of components.
In this case, the aim is to specify all computational
possibilities that a class provides.

Axiom is a logical formula specifying in some way the
possibilities of computing provided by methods of the
class. The concrete syntax of axioms depends on the logic
used for program synthesis. Here and in the examples we
shall use the logic implemented in (Lämmermann 2000).
Here an axiom is a declaration of computability in the form
of an implication with a list of preconditions separated by
commas interpreted as conjunction symbols on its left-
hand side and postconditions on its right -hand side,
followed by its realization – a method or constructor name
in curly brackets, e.g.

currency, localCurrency - >

exchangeRate {getExchangeRate} (1)

An axiom states that the method can be applied, if all its
preconditions are derivable. Postconditions are separated
by commas as conjunction symbols, and by disjunction
symbols |. Postconditions are interface variables or
propositional variables taken in square brackets. The
meaning is that if a postcondition is derivable then the
variable with this name is computable. Disjunc tion
specifies a possibility of alternative results of computation,
e.g.

amount, currency, [currency - >exchangeRate] - >

[debit_t] | exception {debit} (2)
� A precondition is either an interface variable or a

logical formula in square brackets. In this way we
keep the language logically extensible — new forms
of formulae can be used in square brackets. At present,
a formula in square brackets can be just a
propositional variable or an implication with lists of
interface variables on its left- and right -hand sides.
The semantics of preconditions is the following:

� A precondition in the form of an interface variable
means that a value of this variable must be
computable.

� A precondition in the form of an implication denotes a
subgoal: computing values for the interface variables
on its right -hand side from given values of the
interface variables on its left-hand side. We call this a
subtask. Realization of a subtask is a synthesized
method.

� A precondition in the form of a propositional variable
in square brackets does not have any computational
meaning, but must be derivable when the axiom is
used in a proof.

The specification (2) uses the propositional variable
[debit_t] and interface variable exception in
postconditions. The method debit may throw an
exception. This is specified by the disjunct exception in
postconditions. The specification (2) asserts that if the

method debit does not throw an exception then the
transaction to debit the bank account associated with the
current computation was successful.

Realization of an axiom is a method or constructor of
the class to which the specification belongs. Input
parameters of the realization are associated with its
preconditions positionally. For instance, the realization of
currency of the specification (1) is passed as the first
parameter to the method getExchangeRate and the
realization of localCurrency as the second parameter.
Realization of a subtask is passed as an object that
implements an interface called Subtask that has a
synthesized method subtask for solving the subtask. For
instance, the realization of the subtask specified by
[currency - >exchangeRate] of the method debit of
the specification (2) will be passed to the method debit as
object of type Subtask .

Extensions
We have introduced several extensions to th e core
language. Here we consider two of them. The first
concerns first-order features and requires extending the
logic of axioms, all other extensions can be translated into
the logic of the core language.

Metavariables as pre - and postconditions. A
metavariable (Q) as a precondition is satisfied if any
object of the class Q is found. A metavariable as a
postcondition denotes that an object of the given class Q
will be computed. Instead of a component name we use a
class name in parentheses in this case, e.g.

no - > (Account) | (Exception) {getAccount} (3)

amount,currency,[currency - >exchangeRate] - >

[debit_t]|(Exception) {debit} (4)

The second disjunct of both specifications is the
metavariable (Exception) . The formula that specifies the
method debit is the same as we used before in (2), but the
interface variable exception has been replaced with the
metavariable (Exception) . Both specifications state that
exception handling must be provided by some other
metaclass, which is detected automatically during synthesis
if a suitable metaclass for exception handling exists. In our
example we shall use the following metaclass for handling
exceptions:
class ExceptionHandler {
 static String[] spec = {
 "(Exception) - > [any] {handleException}"
 };
 static void handleEx ception(Exception e) {…}
}

This metaclass provides a method that takes as input
any object of class Exception . The method
handleException displays an error message depending
on the given exception. The propositional variable [any]
in the postcondition of t he specification of method
handleException can be used outside this metaclass to

specify logic of computations after exception handling. For
instance, the binding (as used in the metaclass Account ,
which we shall describe in section Logical Semantics of
Specifications)

[debit_t] = [ExceptionHandler.any]

specifies that realizability of the propositional variable
[debit_t] is the same as realizability of the propositional
variable any of the metaclass ExceptionHandler . This
binding is needed to handle exceptions in a logically sound
way.

Equations. The synthesizer and the run -time
environment support the usage of linear equations in
calculations. We have experience in using the equations in
earlier synthesizers (Tyugu 1996) and find this feature very
convenient for gluing together components.

Instance value is a special concept needed for
distinguishing an instance of a metaclass from a structure
composed from realizations of all its interface variables.
We write x.obj instead of x to denote that a value
computed for the interface variable x is an instance of the
class of x , but not the structure constructed from its
instance variables. The name obj is a keyword of the
specification language. For examples we refer to the
definition of method spec_1 in section Specifications as
Metainterfaces and to the example in section Example.

Logical Semantics of Specifications

We implemented initially the same semantics of
specifications that was in the PRIZ and NUT systems
(Mints and Tyugu 1982) (Mints 1991) and were able to use
the structural synthesis of programs (SSP) as described
already in (Tyugu 1996). This guaranteed good scalability
and high performance of the synthesis. However, the logic
of SSP was too restricted for expressing some important
properties of Java programs, first of all – throwing
exceptions. Second, context-awareness that is an important
feature of the synthesis of services required another
extension – introduction of predicates that describe the
appropriateness of some computable objects for binding
independently developed components. Therefore we have
extended the logic with disjunctions and metavariables.
Here we are going to describe the translation of
constructions of the specification language into a language
of logic and then outline the usage of the logic in the
program synthesis process.

Structural properties of objects are represented in our
logic computationally. We avoid the usage of description
logic (Premkumar, Devanbu, and Jones 1994) for
representing structures, although it has been designed for
this purpose. In this way we keep the control over proof
search and preserve its high performance. The semantics of
a metainterface X having interface variables x1,…,x k is
expressed computationally by the axioms X - > x1, …, x k
and x1, …, xk - > X where identifiers denote the

computability of variables with the same names. (This
conforms to our usage of names of variables in axioms in
section Specification Language.) These formulae express
that the structural value i s computable when all its
components are given, and vice versa - all its components
are computable when the structural value itself is known.
Besides that, we have to take into account the structures
when equalities are present. In the case of equality of two
structures, e.g. x=y (x:X , y:X) we have to be able to infer
the computability of any of the components of any of them
as soon as a respective component of the other is given. An
easy way to guarantee this property in our logic is to
unfold the equality explicitly for all components, i.e. to
write automatically x.z=y.z for all components z of x
and y .

Axioms written in a specification are translated into
logic in a straightforward way. They are implications with
preconditions on the left and postconditions on the right
side. If a method may throw an exception, then it is
described by an implication with disjunction on its right
side. One disjunct specifies normal execution and the other
– throwing an exception, e.g.

url - > (Bank) | (Exception) {Naming.loo kup}

Handling disjunctions requires introduction of a new
search strategy – search of proof of the innermost goal.
This extension is thoroughly described in (Lämmermann
2000). As we have said it earlier, the nested implications
are subtasks. The general form of an axiom for a method
or constructor with m subtasks, n input variables, s output
variables and throwing exceptions is:

(u 1,1 ∧…∧u1,k1 - > v 1) ∧ … ∧(u m,1∧…∧um,km - > v m) ∧
x1∧…∧xn - > y 1 ∧… ∧ ys∨z

Metavariables are translated into the logic with
quantifiers: as a universal quantifier among the
preconditions and an existential quantifier among the
postconditions. Examples are as follows:

�
(C) ∧x- >y gives ∀w(C(w) ∧x- >y)

�
u- >v∧(C) gives u- >v∧∃wC(w) .

Inheritance is straightforward – all axio ms of a
superclass are added to the axioms of the class.
Metainterfaces of Java classes and Java interfaces are
handled in one and the same way. This leads to multiple
inheritance in metainterfaces.

Unfolding is used for representing the semantics of
interface variables whose type is specified by a metaclass.
Let us consider the metaclass ExchangeRate described in
section Specifications as Metainterfaces. Its logical
semantics is expressed by a collection of formulae. If a
new interface variable exchR:ExchangeRate is specified
(as it is in the class Account shown below), then these
formulae are explicitly inserted into the logical
specification and prefix exchR is added to all names in
these formulae. This leads to expansion of the
specification, but avoids excessive usage of universal

quantifiers. An example is a Java remote interface
Account :
interface Account extends java.rmi.Remote {
 static String[] spec = {
 "amount : int", "currency : String",
 "exchangeRate : float", "exch : Exchange",
 "exch.localCurrency = currency",
 "exchR : ExchangeRate",
 "exchR.currency = currency",
 "exchR.exchangeRate = exchangeRate",
 "[debit_t] = [ExceptionHandler.any]",
 " amount,currency,[currency - >exchangeRate] - >
 [debit_t]|(Exception) {debit}"
 };
 void debit(int amount,String currency,Subtask sub)
 throws RemoteException;
}

The metaclass Account we have presented here
provides a remote transaction debit to debit an account.
Its metainterface declares five interface variables: amount ,
currency , exchangeRate , exch , and exchR . We use the
propositional variable [debit_t] to specify the final state
of a complete transaction that involves the method debit
and exception handling. The binding
[debit_t]=[ExceptionHandler.any] is needed to
synthesize a branch for handling exception. Let us use
Account to illustrate the change in specifications if we
unfold this metaclass. The first prefix to be added to all
names of interface variables and propositional variables
(excluding metavariables) is the name of the metaclass,
which is Account . For instance, all occurrences of the
interface variable amount become Account.amount . The
axiom specifying the method debit is replaced by:

Account.amount,Account.currency,
[Account.currency - >Account.exchangeRate] - >

[Account.debit_t] | (Exception) etc.

Metavariables are left unchanged, e.g. (Exception)
remains as it is. The unfolding is done hierarchically, if
needed. Hence, long compound names occur. We use
compound names also in generated source code, but
substitute an underscore (_) for a dot (.) in a compound
name in order to conform to the Java programming
language syntax, for instance, see automatically built
method spec_1 described above.

Java classes may have instance methods and class
methods. Class methods are invoked on a class, not on an
instance. Our specification language does not reflect this
fact. Fortunately, we can gather information about methods
by introspection of classes while unfolding, and call an
appropriate constructor of a class first and create its
instance, if its instance methods are used in a synthesized
program.

Example

The example is synthesis of a transaction program
implemented in a distributed way using Java RMI. The
program implements a service — debiting a bank account.
The metaclasses needed for specifying this service are

Bank , Account , Exchange , ExchangeRate , and
ExceptionHandler . Fortunately, we have already
specified these metaclasses except Bank . The metaclass
Bank is a remote interface:
interface Bank extends java.rmi.Remote {
 static String[] spec = {
 "no : long",
 "url : String",
 "url - > (Bank) | (Exception) {Naming.lookup}",
 "no - > (Account) | (Exception) {getAccount}",
 };
 Acco unt getAccount(long no) throws RemoteException;
}

The metaclass Bank we present here provides only one
remote method getAccount , but reuses the class method
lookup of the class Naming . The method lookup is used
to obtain a remote reference to a bank object that is
associated with a given url (Uniform Resource Locator).
This remote reference is then used to obtain a remote
reference (by invoking the method getAccount on it) to
an account object that is connected to a given account
number no. Having access to an account object we can
debit the corresponding account by invoking the method
debit on the remote reference if we can solve the sub-
problem to calculate the exchangeRate of the local
currency and the currency of the location of the bank.
Some methods of our metaclasses may throw an exception,
which is specified by using disjunction in the
postconditions of the specifications of the respective
methods. Due to disjunction, we have to solve additional
sub-problems that take over the computation in case of
exception.

It is our goal to derive a program to debit an account at
a bank. The input for this program is the url of a bank, the
account number no, and the amount of how much the
respective account should be debited. To synthesize this
program we state the following goal:

Bank, Account | - Bank.url, Bank.no, Account.amount - >
[Account.debit_t]

The list of metaclasses (Bank, Account) of the
antecedent of this goal does not contain all metaclass that
are needed to synthesize our program. The synthesis
involves also metaclasses Exchange , ExchangeRate , and
ExceptionHandler . The deployment of the metaclass
ExceptionHandler is implicitly specified by the
metavariable (Exception), where the deployment of the
metaclasses Exchange and ExchangeRate is explicitly
specified in metainterfaces.

After unfolding the metainerfaces of our metaclasses we
obtain a flat representation of all formulae that specify
methods and constructors of classes. The list of all needed
formulae, after unfolding, is the following:

Exchange
C1 � - > (Account.exch.obj)

getLocalCurrency
C2 � [(Account.exch.obj)] - >
 Account.exch.localCurrency

ExchangeRate
C3 � - > (Account.exchR.obj)

spec_1
C4 � [(Account.exchR.obj)],
 Account.exchR.currency - >
 Account.exchR.exchangeRate

handleException
C5 � (Exce ption.obj) - > [Exception.any]

Naming.lookup
C6 � Bank.rul - > (Bank.obj)|(Exception.obj)

getAccount
C7 � [(Bank.obj)],Bank.no - >
 (Account.obj)|(Exception.obj)

debit
C8 � [(Account.obj)],Account.amount,
 Account.currency,[S] - >
 [Account.debit_t]|(Except ion.obj)

S � Account.currency - > Account.exchangeRate

E1 � [Account.debit_t]=[Exception.any]

E2 � Account.exch.localCurrency=Account.currency

E3 � Account.exchR.currency=Account.currency

E4 � Account.exchR.exchangeRate=Account.exchangeRate

Each implication specifies input/output conditions of a
component C1, …, C8 (which encapsulate a method or a
constructor). For convenience we have named the bindings
by E1, …, E4. We replaced the subtask specification of the
formula that specifies component C8 by the proposition S,
where S is a formula. The schema in Figure 1 depicts our
synthesized transaction program.

Figure 1. Program schema.

Each box represents a component. Arrows leading from

one component to another represent da taflow in
computation and component composition in synthesis.

Figure 2. Subtask schema.

The component debit receives as input the subtask S,

which calculates the exchange rate. A separate schema,
Figure 2, presents the subtask S.

Concluding Remarks

On the practical side, early Java environments suffered
from the difficulties in the reuse of classes (first of all,
related to GUI). As a result, JavaBeans were introduced.
This was followed by the introduction of Enterprise Java
Beans (EJB) as components of domain -oriented
applications. In both cases, classes were supplied with
additional information, and mechanisms (e.g. beanboxes)
were developed for using this information. The practicality
of program synthesis, not especially related to object -
oriented software development, has been demonstrated by
several software development systems, e.g. (Blaine et al.
1998) (Stickel et al. 1994).

We introduce an extension of classes that is supported
by a domain -independent program synthesis technique,
already tested in practice to some extent. As this work is
performed in the context of a larger project Personal
Computing and Communication (PCC), we have a
practical goal to apply our technique to just -in-time
synthesis of services from preprogrammed components. In
this work we use a logic and a specification language close
to those that have been tested in practice (Tyugu, Matskin,
and Penjam 1999). The logic is expressive enough for
describing, first, structure of hierarchical configurations,
second, dataflow between the components, and third,
mutual needs of the components of a service – bindings
between objects of separately implemented components.
The proposed composition model uses a logical proof as a
justification of correct deployment of components in the
context of their use. We are well aware of tradeoffs
between the expressiveness and efficiency of automatic
usage of logic, and have chosen in some sense minimal
logic that is still universal, i.e. enables us in principle to
specify any computable function. This gives the efficiency
of search needed in the composition process.

In the systems of structural synthesis (Tyugu, Matskin,
and Penjam 1999) (Tyugu 1996) the potential components
must be explicitly visible from specifications (after
unfolding a specification), and selection of components
actually included into a synthesized program is performed
on the basis of higher -order dataflow. This is very

C1

C2

C5

C6

C7

C8

Bank.url

Bank.no

Bank.amont

(Bank.obj)

(Account.obj)

(Account.exch.obj)

 E2

Account.debit_t

 E1

(Exception.obj)

S

C3

C4

(Account.exchR.obj)

E3 E4

restrictive in the case of synthesis of services, because of
changing context of a service, but it facilitates the proof
search. In the present work, we have extended the logic by
introducing metavariables in such a way that components
of synthesized software can be selected without explicit
reference to them. One has to circumscribe, however, the
context where the search of components is performed in
every particular case. In other words, one must be able to
decide for each metaclass, whether this metaclass may be
used in the synthesized service. This process is not
supported by our system. We hope to use our synthesis
together with the component selection method proposed in
(Penix and Alexander 1997) using the latter for the
preselection of potential comp onents and using our
synthesis for adaptation and binding the selected
components.

Some words have to be devoted to the performance of
the synthesizer. The performance of compilation is not
critical. Support of introspection and dynamic compilation
of classes in Java has helped the implementation. Some
experimental performance evaluation can be found in
(Lämmermann 2000). The critical phase is proof search.
Here we can partially rely on the experience of the
structural synthesis. In particular, if one does not use
metavariables, the performance is as good as for the
structural synthesis, and programs including thousands of
steps can be synthesized in a reasonable time, see (Tyugu,
Matskin, and Penjam 1999). When metavariables are used,
one has to restrict th e search space by preselection of
candidate components, and here we intend to use methods
developed in (Penix and Alexander 1997) as we have noted
it above. The logic of specifications can be extended
without significant changes of the specification language.
However, a more expressive logic may create more
difficulties with the performance of proof search.

Implementation of the developed language is still
continuing. In particular, one can solve only linear
equations at present, although experience with the NUT
system has given us sufficient know-how for implementing
more elaborate equation solvers. Also work is going on
with the aim of adding a visual interface (a scheme editor)
for supporting visual development of metainterfaces.

Our practical application experience is still limited, but
we have experimentally synthesized software for a context
aware printing service, file downloading and uploading,
composing streams, and for a bank transaction services
(Lämmerman and Tyugu 2001). One part of the latter,
debiting an account at a bank, has been presented in this
paper.

Acknowledgements

The Swedish Foundation for Strategic Research (Stiftelsen
för Strategisk Forskning, SSF) provided support for this
work within the project Personal Computing and
Communication (PCC) under contract PCC -0101-06.

Discussions with researchers involved in this project are
gratefully acknowledged.

References

Blaine, L., Gilham, L., Liu, J., Smith, D. R., and Westfold,
S. 1998. Planware - Domain-Specific Synthesis of High-
Performance Schedulers. In Proceedings of the Thirteenth
Automated Software Engineering Conference, 270-280.
IEEE Computer Society Press.

Lämmermann, S. 2000. Automated Composition of Java
Software. Lic. diss., TRITA-IT AVH 00:03, ISSN 1403 -
5286. Dept. of Teleinformatics, KTH, Sweden.

Manna, Z., Waldinger, R. 1992. Fundamentals of
Deductive Program Synthesis. TSE 18(8): 674-704.

Mints, G. and Tyugu, E. 1982. Justification of structural
synthesis of programs. In Science of Computer
Programming 2(3):215-240.

Mints, G. 1991. Propositional Logic Programming. In J.
Hayes, D. Michie et al (eds.), Machine Intelligence 12:17-
37. Clarendon Press.

Stickel, M., Waldinger, R., Lowry, M., Pressburger, T.,
Underwood, I. 1994. Deductive Composition of
Astronomical Software from Subrou tine Libraries. In
Automated Deduction. A. Bundy, ed., LNCS 814.
Springer.

Penix, J. and Alexander, P. 1997. Toward Automated
Component Adaption. In Proceedings of the 9th
International Conference on Software Engineering &
Knowledge Engineering (SEKE-97), Madrid, Spain.

Tyugu, E., Matskin, M., Penjam, J. 1999. Applications of
structural synthesis of programs. In J. Wing, J. Woodcock,
J. Davies (Eds.) FM`99. World Congress on Formal
Methods in the Development of Computing Systems, vol.
I, LNCS 1708: 551-569. Toulouse, France. Springer.

Tyugu, E. 1996. Classes as program specifications in NUT.
Journal of Automated Software Engineering 1:315-334.

Premkumar, T., Devanbu, and Jones, M. A. 1994. The use
of description logics in KBSE systems. In Proceedings of
the 16th International Conference on Software Engineering.
Sorrento, Italy.

Lämmerman, S., Tyugu, E. 2001. A Specification Logic
for Dynamic Composition of Services. In Proceedings of
the 21 st IEEE International Conference on Distributed
Computing Systems Workshops, 157-162. Mesa, Arizona.
IEEE Computer Society Press.

